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Abstract—Humanoid robots are increasingly used to perform
human mimicking tasks, such as walking, grasping, standing
and sitting on objects. To generate poses interactively using a
humanoid robot, the performed poses should be controlled to
satisfy any potential interaction with the surrounding environ-
ment. In this paper, a simulated humanoid robot "NAO" is
used to discover a fitness-based optimal sitting pose performed
on various types of sittable-objects, varying in shape and
height. Using an initial set of random valid sitting poses as
the input generation, genetic algorithm (GA) is applied to
construct the fitness-based optimal sitting pose for the robot
to fit well on the sittable-object (i.e. box and ball). The used
fitness criteria reflecting pose stability (i.e. how feasible the
pose is based on real world physical limitation), converts poses
into numerical stability level. The feasibility of the proposed
approach is measured through a simulated environment using
V-Rep simulator which shows how the GA is able to generate
a fitness-based optimal sitting-pose. The real "NAO" robot is
used to perform results generated by the simulation.

Index Terms—Humanoid robot, pose, genetic algorithm, fit-
ness function, crossover, mutation, generations.

I. INTRODUCTION

Humans are able to get into a variety of whole-body static
poses. These poses might interact with and get support from
the surrounding environment. A pose is defined as the relative
arrangement of body parts and limbs. Standing and sitting
are the most important whole-body pose configurations. For
example, in the traditional standing pose, the plumb line (line
directed exactly toward the center of gravity) passes through
the shoulders tip, spine, hips center, and the center of the
ankles joints. To perform the standing pose correctly, the
body pose should get some external support (i.e. flat surface)
to be in contact with the body’s feet. When sitting, the body
hips play a vital role since they get the major external support
(chair, floor, or any other object valid to sit on). In the case
of a sitting pose, the plumb line does not pass through the
lower body parts.

Humanoid robots consist of a set of joints organized in a
kinematic hierarchy, where each joint has a limited space
of movement. The pose of a humanoid robot is usually
defined by the servo-angles, affecting the robot’s joints. A
valid humanoid robot pose (set of joints angles) is shaped to
satisfy specific tasks or behavior requirements [3].

In this work, the main goal is to improve the ability of the
human robot to mimic the human whole-body sitting pose.

More precisely, given a few examples of valid sitting poses,
and using some unknown objects to sit on, our task is to find
a fitness-based optimal sitting pose that satisfies the sittable-
object’s parameters (shape and height).

Since the humanoid robot has a large number of joints
(NAO consists of 25 degrees of freedom), the search space
has a high dimensional space, making it extremely hard to
explore. In situations like this, heuristic approaches can guide
the search process efficiently while producing competitive
results in a relatively sufficient time. Genetic Algorithms
(GA) play a major role in optimization problems through
the use of a heuristic guiding approach inspired by the
evolution theory. So far, GA has been used as a tuning tool
for humanoid robot pose control [14].

In this paper, we describe a GA evolutionary approach
for finding a fitness-based optimal sitting pose for a given
sittable-object. For space consideration and some simulator
limitations, this work is not intended on how to place the
humanoid robot in front of sittable-objects. For details re-
garding this direction there are many related works [6], [12].
The paper is organized as follows: Problem formulation
is introduced in Section II. Related work is described in
Section III. The sittable-object’s height discovery process
is discussed in Section IV. Section V describes the GA.
Evaluation is discussed in Section VI. Finally, conclusion
remarks appear in Section VII.

II. PROBLEM DEFINITION

A. NAO Robot Specifications
In this paper, we used NAO humanoid robot simulation

offered by V-Rep for experimentations and evaluation. The
original NAO robot was developed by Aldebaran Robotics.
NAO has actuated 25 degrees of freedom (DOF, see Fig. 1).
NAO has a group of sensors including cameras, microphones,
sonar rangefinder, pressure sensors, tactile sensors, and IR
emitters and receivers [1]. In this paper, the use of NAO
capabilities are limited to collision detection, distances esti-
mation (i.e. Euclidian distance), and physics engine. There
are three different kinds of distances, which we used in the
simulation throughout this work:

• The distance between the robot’s head and the floor
surface, determining whether the robot falls down or
not using a threshold distance γ cm.



• The distance between the robot’s hips and the sittable-
object’s surface, determining whether the robot is on the
sittable-object’s surface or not. Monitoring this distance
is important to make sure hips are in contact with the
sittable-object. In some cases, the robot might be in valid
sitting pose and does not fall, but uses contact points
with the sittable-objects other than hips.

• The distance between the robot’s hips and the floor
surface, measuring whether the robot is sitting on the
sittable-object surface or not.

Fig. 1: NAO humanoid robot model developed by Aldebaran Robotics [1].

B. Problem Formulation

Let the robot model M consists of a finite collection set
of joints J = {j1, j2, ..., js}, where |J | = s. These joints
are organized and placed in a kinematic hierarchy model that
satisfies a humanoid robot model. For these joints, there is
a transformation T = {t1, t2, ..., ts} ⊂ Rs related to the
joints in the robot structure. Each ti in the transformation
is defined according to its parent joint (except t1, which is
defined to some relative world position). We define a pose
pi = (t1, t2, .., ts) ∈ T as the transformation related to the
robot model rigid joints.

For such robot model, there is a space S ⊂ T that
is assumed, which consists of all possible sitting poses.
We classify the pose as a sitting pose based on the hips
joints and its angles judgment (whether the angle is larger
than δ or not). We also define a set of sittable-objects
O = {o1, o2, ..., ok}, where |O| = k. In order to measure a
pose p stability, we define a fitness function F(.), measuring
a pose p fitness level using a fixed set U of six monotonically
increasing levels (U = {0, 0.2, 0.4, 0.6, 0.8, 1}). Using a set
I = {p1, p2, ..., pn} ⊂ S of initial poses which represent
sitting poses, the question that arises using the set I, is
how to find a stable pose p in the space S, accurately
fitting on the sittable-object. Mathematically, the problem

can be formulated as an optimization problem, with the
objective function F : S → L ∈ U . The goal here is to
find the global optimal statically-stable pose ṕ:

ṕ = argmax
p∈S

F(p) (1)

If there are multiple global optimal poses, the optimal pose
ṕ is selected randomly from those poses. In this paper,
to construct a representative chromosome, we used all the
related joints in the robot, which are used in the sitting pose
confirmation. The joints are described in Table I.

III. RELATED WORK

As far as we know, this is the first work that uses the GA
evolutionary approach to construct an optimal pose, taking
into account the sittable-object’s parameters (i.e. shape and
height). However, there are many previous studies on how to
control the humanoid robot motion [8], [17], [13], [2], [10].
The work in [8] focuses on asymmetric motion generation
for some predefined yoga poses and finds stable trajectory
between random initial poses set and a goal pose posture
using the evolutionary genetic algorithm approach (GA). The
number of active joints in GA individuals to create the goal
posture varies according to the goal posture shape. In [17]
an interactive evolutionary computation approach (IEC) is
proposed to generate a stable simulated motion to perform
tasks such as kicking a ball. The work depends on observing
visually displayed motion of a robot, and then segment this
motion into a set of keyframes using 3D computer graphics
(3D-CG) method [16]. Based on these keyframes in which
express the motion as a combination of a pose and a time
frame, genetic algorithm can be applied in order to generate
the optimal stable motion. Machine learning has been used
in [10] for teaching humanoid robot on biped dynamic
walking. This work invests the basic primitives in human
behavior and use them as constraints in the learning process
in order to generate human-like motion.

IV. DISCOVERING THE SITTABLE-OBJECT HEIGHT

The discovery of the sittable-object height requires apply-
ing a stable motion in order to place the robot’s hips on
the sittable-object. To perform this task dexterously, center
of mass (COM), internal forces behavior, and the contact
points with the surrounding environment should be managed
appropriately [15], [4]. For the used NAO robot model, the
default robot’s joints COM settings parameters which were
set in the V-Rep simulation are also kept in this work. The
discovery process focuses on two main goals. First, since the
sittable-object’s height is unknown, the robot should sense
any potential collision with the sittable-object to determine
the sittable-object’s height. Second, the robot’s hips should be
placed on the sittable-object such that the robot stays stable.
In order to establish a stable discovery process, a predefined
stable motion path is used to keep COM for the whole robot
within its supporting polygon (the convex hull formed within
all points of contact between the robot model M and 3D
surrounding environment objects). Starting from robot initial



(a) Initial Pose (b) Zero Pose (c) Intermediate Pose (d) Intermediate Pose (e) Initial Sitting Pose

(f) Initial Pose (g) Zero Pose (h) Intermediate Pose (i) Intermediate Pose (j) Initial Sitting Pose

Fig. 2: Object height discovery process. The discovery process starts from adjusting the NAO robot’s hips on the cube surface and occurs in a sequence,
a) a simulated initial pose for the NAO, b) a simulated zero pose (i.e. standing posture with arms pointing forward), c, d) some simulated intermediate
stages, and e) a simulated initial sitting pose. f) - j) a real path discovery sequence related to the simulated sequence. Link to a video file shows the
discovery process is provided.

pose (zero pose and assuming robot is placed on front of a
sittable-object) shown in Fig. 2(b), the robot begins to lean
in a motion which going towards a sitting pose gradually
(see Fig. 2(c) - 2(e)). The discovery process adjusts specific
joints in the pose p transformation: LKneePitch, RKneePitch,
LHipPitch, RHipPitch joints (see Table I).

V. GENETIC ALGORITHM

The proposed approach in Fig. 3 focuses on generating
the fitness-based optimal sitting pose using an initial set
(I = {p1, p2, ..., pn}) of valid sitting poses. The approach
starts with discovering the sittable-object’s height (see Sec-
tion IV), followed by using the GA to find the fitness-
based optimal sitting pose ṕ, which then satisfies the sittable-
object’s parameters (shape and height). The used robot’s
joints that participate in the GA are classified into four
blocks: right arm, left arm, right leg, and left leg shown
in Fig. 4, and explained in more details in Table I. The
blocks and the order of these blocks are important for the
crossover process to accomplish similar blocks in the parents
chromosomes.

Algorithm 1 shows the GA structure. This approach starts
with G1 as an initial generation (line 2), followed by fitness
checking (line 5). Based on the generation Gt fitness values,
we use the elitist approach by moving the best E% of
chromosomes, which have the highest F(p) values in each
generation directly to next generation (line 7). Parents selec-
tion (line 12) is based on tournament strategy, where for each
parent two candidates are randomly selected from Gt and the
one with the higher F(.) value is assigned to that parent.
Crossover (line 13) and mutation (line 16) are the main
GA operators, that were used to generate an increasingly
developed hypothesis regarding the optimal sitting pose ṕ.
For each generation, we create a population (line 18) of
chromosomes with a predefined size (line 10) such that,

Algorithm 1 Evolutionary GA Approach for Optimal Sitting Pose
Generation

1: t← 1 {Generation counter}
2: Gt ← I
3: repeat
4: for all p ∈ Gt do
5: Compute F(p) fitness
6: end for
7: Elitist ← From Gt Select E% of highest F(p) ∀p ∈

Gt {E is the elitist strategy percent}
8: C ← 1 {Poses counter in each generation}
9: Population ← [ ]

10: while C ≤ Samples Size do
11: Parents ← tournament selection
12: if (rand < CrossRate) then
13: Chromosome ← Crossover(Parents) {Crossover

at block level}
14: end if
15: if (rand < MutRate) then
16: Chromosome ← Mutation(Chromosome)
17: end if
18: Population ← Population + Chromosome
19: C ← C + 1
20: end while
21: t← t+ 1
22: Gt ← Elitist + Select from Population using residual

sub sampling
23: until (Generations limit or optimal pose ṕ is reached)

the population is a feasible distribution about the evolution
process for Gt. For this purpose, the sample size is selected
to be four times the number of poses in the initial set I.

In (line 22), we construct the next generation Gt+1 poses
by choosing the elitist part from the current generation Gt.

http://www.youtube.com/watch?v=zuZO0nZHwlM&feature=youtu.be
http://www.youtube.com/watch?v=zuZO0nZHwlM&feature=youtu.be
http://www.youtube.com/watch?v=zuZO0nZHwlM&feature=youtu.be
http://www.youtube.com/watch?v=zuZO0nZHwlM&feature=youtu.be
http://www.youtube.com/watch?v=zuZO0nZHwlM&feature=youtu.be
http://www.youtube.com/watch?v=zuZO0nZHwlM&feature=youtu.be
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Fig. 3: Optimal sitting pose ṕ finding approach. (1) Initial hypothesis set I. (2) A predefined path of motion to place the robot’s hips on the sittable-object.
(3) The generation of poses Gt is used to apply GA in attempt to produce a more promising and increasingly developed hypothesis. (4) The used fitness
function F(.) structure. (5) The used GA operators and selection strategy. (6) Swapping process in order to repeat the same process for the next generation
Gt+1.

The other poses are selected from the constructed popula-
tion distribution. The population distribution forms a non-
deterministic process for choosing the poses that will survive
in the next generation Gt+1. The stop criteria for the GA
(line 23) depends on the fitness value of the poses in the
generation, or the number of generations limit. If the optimal
fitness value has been reached (i.e. pose p, such that F(p) =
1), the process stops and returns the optimal pose ṕ.

A. Fitness Function

To judge the stability of each pose p in a generation Gt, and
how well the pose fits on the sittable-object oj , we designed a
suitable fitness function. The fitness function F(.) measures
the pose p stability based on its resistance to a sided shaking
force (both sides in the box case and directed towards the
robot hips) initiated from the sittable- object oj . The more the
robot resists the shaking force without falling, a promotion to
a better stability level for the pose is recorded. The shaking
force consists of monotonically increasing six different levels.
These levels are translated to six discrete values ∈ U , in
which were used as the fitness level.

B. Crossover and Mutation Process

A GA uses crossover and mutation operators to vary the
chromosomes (the used poses in the generation Gt) from
generation Gt to the next generation Gt+1. The building block
hypothesis [9] describes the existence of some important
building blocks in the chromosome sequence. Crossover
process works to produce highly fitted chromosomes in the
reproduction process based on important building blocks in
the chromosome sequence. In this work, a structured chromo-
some is used to support the building blocks hypothesis. For
any pose p in a generation Gt, the transformation sequence
for this pose starts with the right arm joints angles (5 joints),
followed by the left arm joints angles (5 joints), then the right
leg joints angles (6 joints), and finally the left leg joints angles
(6 joints). The crossover process occurs at block level, so

the crossover cut happens between parents left arms, parents
right arms, parents left legs, and parents right legs. This
means, only entire groups are exchanged in the crossover
process. The mutation and crossover operators are intended to
maintain a non-deterministic operation to assure diversity in
the generation Gt poses, and to avoid premature convergence
(falling in a local minima). By this, the reproduction process
keeps going toward the global optimal pose ṕ. A uniform
distribution random number were used for mutation value β,
such that |β| ≤ 5 (i.e. the mutation amount is at most 5
degrees) to generate the mutation amount in the mutation
process. The GA operators, CrossRate, and MutRate (see
lines 12, and 15 in Algorithm 1) represent the crossover
rate and mutation rate. Based on empirical tests we set fixed
rates of CrossRate = 0.9, and the MutRate = 0.6 for the
experiments. Table II shows an example on how some parents
poses are used and block level crossover is applied, followed
by joint level mutation in order to generate a new child
pose chromosome. The crossover cutting points are chosen
randomly with a uniform distribution from the associated
building blocks in the parents chromosomes, so the new child
chromosome gains a mixture between the parents building
blocks.

C. New Generation Gt+1 Selection Strategy

In order to provide a non-deterministic and a distribution-
based survival principle for the chromosomes in the next
generation Gt+1, we created a population of processed chro-
mosomes (line 20 in Algorithm 1) to produce samples that
represent a distribution for new generated chromosomes.
The distribution is based on the fitness value F(.) of the
chromosomes. We used residual sub-sampling [11] in order
to select the next generation Gt+1 chromosomes. The residual
sub sampling keeps the number of poses chromosomes of
each generation |I| constant.



Block Used Joints Number of Joints
Left Arm LSHoulderRoll, LShoulderPitch, LElbowYaw, LWristYaw, LElbowRoll 5
Right Arm RSHoulderRoll, RShoulderPitch, RElbowYaw, RWristYaw, RElbowRoll 5
Left Leg LHipYawPitch, LHipPitch, LKneePitch, LAnklePitch, LAnkleRoll, LHipRoll 6
Right Leg RHipYawPitch, RHipPitch, RKneePitch, RAnklePitch, RAnkleRoll, RHipRoll 6

TABLE I: The used joints in the GA and their classification into blocks.

Right Arm Left Arm Right Leg Left Leg
Parent1 −28 58 84 0 89 28 58 −86 0 −89 −1 −100 0 4 0 0 −1 −100 0 4 0 0

Parent2 −51 18 84 101 42 44 −2 −82 −101 −38 −38 −67 82 9 −9 13 −38 −80 87 9 −13 20

Crossover −28 58 84 0 89 44 −2 −82 −101 −38 −1 −100 0 4 0 0 −1 −100 0 4 0 0

Mutation 0 0 0 +3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Child −28 58 84 +3 89 44 −2 −82 −101 −38 −1 −100 0 4 0 0 −1 −100 0 4 0 0

TABLE II: Generating a new child chromosome using crossover and mutation (all angles are in degree system). Using parents selected with tournament-
based selection from the previous generation Gt−1, we apply crossover block based, then we apply mutation joint based in order to generate a new child
chromosome.

(a) Cube Box 12 cm height (b) Cube Box 15 cm height (c) Ball 05 cm radius (d) Ball 7.5 cm radius

(e) Cube 12 cm height (f) Cube 15 cm height (g) Ball 05 cm radius (h) Ball 7.5 cm radius

Fig. 5: Various fitness-based optimal poses generated using GA evolutionary approach for different sittable-objects varying in shape and height. Links to
video files for real robot which show implementing the results on the real robot are provided by clicking on the labels (e - h).

Fig. 4: Joints blocks in the evolutionary approach. For crossover process,
block level crossover is used from the parents poses in the generation Gt

to generate new springs in the generation Gt+1, while single joint mutation
level is used for the mutation process.

VI. EVALUATION

V-Rep is a 3D robot modeling simulator, that provides
some concurrent capabilities such as actuating, sensing, and
monitoring. The simulator also supports many calculation

modules such as forward and inverse kinematics, physics
engines, path planning, and collision detection [5]. There-
fore, we used the built-in simulated NAO robot in V-Rep,
approximating the original NAO design in the Aldebaran
original manufacturer. We used the V-Rep’s simulation since
applying the experiment on a real robot is difficult due to
many obstacles, the major one being the difficulty to apply
the fitness function in the real world.

The communication with V-Rep’s simulator is pro-
grammed using the Python remote application program-
ming interface (remote API) via socket communication. The
client’s side consists of genetic algorithm unit and fitness
function unit, both implemented using Python programming
language. At the opposite side, the server’s side (V-Rep’s
simulation side) consists of a customized simulated environ-
ment involving the NAO robot and the sittable-object. The
internal structure of the simulation is supported with physics
engines (bullet, and ODE) replicating the real world physics
in the simulation environment. The supported physics engines
are able to detect any potential collision, approximate the
gravity force, and assign the robot joints masses such that

http://www.youtube.com/watch?v=N7BwRIZ4UHQ&feature=youtu.be
http://www.youtube.com/watch?v=rmoeRdlfdiY&feature=youtu.be
http://www.youtube.com/watch?v=gI7fsNV2N3M
http://www.youtube.com/watch?v=QVb2Dad06ps&feature=youtu.be


the relation between COM of the NAO robot and supporting
polygon can be mathematically estimated. In our evaluation,
we chose bullet physics engine to measure pose stability and
its ability to be performed on the sittable-object.

To assure pose validity (joint positions being within their
limits), the output from crossover and mutation operator has
to be checked, since the mutation process mutate the pose
randomly, not guaranteeing the generated pose joints to be
within their predefined limits. The used NAO model in V-
Rep can discover these kinds of fault poses, and exclude
them from the experiment. In the evaluation, we focus on
two different sittable-objects types (box and ball). For each
sittable-object, the experiment is executed on two different
heights, and the best sitting pose chromosome is generated
for each experiment using the GA. The objects are selected
based on their availability in the V-Rep’s simulator. For
experimental purposes, we used randomly selected 12 sitting
poses (not relating to a specific sittable-object) as initial
generation G1, and based on these initial poses we performed
the GA algorithm to produce an increasingly developed
hypothesis.

Fig. 5 shows the final optimal poses for each sittable-
object case. For the box sittable-objects in Fig. 5(a) and
Fig. 5(b), we used two different heights (12cm and 15cm) in
the evaluation experiments. Since the generated pose from the
experiment should assure the pose stability on the sittable-
object, the generated pose might have a different number
of contacts with the surrounding environment in order to
keep the pose stable. In the case of ball sittable-object, the
situation is slightly different. The sittable-object (ball) tends
to roll easily, unlike the box sittable-object. The used shake
force, which is applied in the fitness function F(.) plays a
major role in drawing the shape of the required adjustment
to achieve the optimal pose. The crossover and mutation
operators have directed the parents poses towards a more
fitted pose that can achieve a higher fitness level value.

The computation time depends on the generation size and
generations limit, however to speed up the GA, we applied
the elitist selection strategy such that the best E% poses
in every generation were kept in the next generation (i.e.
in our case, we kept the best 20% of the poses in each
generation). At the same time, the parents selection in the
generation chromosomes depends on a tournament selection.
For each parent, two randomly chromosomes are selected
from the generation. Then, based on the fitness value for these
chromosomes we choose the one with the higher fitness level.
Throughout the experiment, we noticed slight differences
between the simulation results, and how these results appear
using the actual real robot. Since we are working through an
open loop, these slightly differences are not recovered in the
current work, thus might be considered as future work.

VII. CONCLUSION

In this paper, we presented a Genetic Algorithm (GA)
evolutionary approach for a fitness-based optimal sitting
pose generation, that is able to be performed on a sittable-
object in a stable manner. We described how to construct a

fitness function that assigns a stability level score to a sitting
pose. To discover object height, we applied a predefined
motion, which keeps the COM within its supporting polygon,
while simultaneously sensing any potential collision with the
sittable-object. We also discussed how to apply the block-
based crossover operator complying with the building blocks
hypothesis [9], as well as how to use the process of mutation
in a pose chromosome sequence.
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