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Abstract
Deep learning has made a real revolution in the embedded computing environment. Convo-
lutional neural network (CNN) revealed itself as a reliable fit to many emerging problems.
The next step, is to enhance the CNN role in the embedded devices including both imple-
mentation details and performance. Resources needs of storage and computational ability are
limited and constrained, resulting in key issues we have to consider in embedded devices.
Compressing (i.e., quantizing) the CNN network is a valuable solution. In this paper, Our
main goals are: memory compression and complexity reduction (both operations and cycles
reduction) of CNNs, using methods (including quantization and pruning) that don’t require
retraining (i.e., allowing us to exploit them in mobile system, or robots). Also, exploring
further quantization techniques for further complexity reduction. To achieve these goals, we
compress a CNN model layers (i.e., parameters and outputs) into suitable precision formats
using several quantization methodologies. The methodologies are: First, we describe a prun-
ing approach, which allows us to reduce the required storage and computation cycles in
embedded devices. Such enhancement can drastically reduce the consumed power and the
required resources. Second, a hybrid quantization approach with automatic tuning for the
network compression. Third, a K-means quantization approach. With a minor degradation
relative to the floating-point performance, the presented pruning and quantization methods
are able to produce a stable performance fixed-point reduced networks. A precise fixed-point
calculations for coefficients, input/output signals and accumulators are considered in the
quantization process.
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1 Introduction

CNN paradigm architecture has shown a state-of-art performance in the field of image recog-
nition benchmarks [1,2]. Studying other different aspects of this network would enhance the
network use and implementation in embedded devices. The underlying architecture of the
CNN might vary from one network to another. Recent architectures contain a large number
of layers. Some architectures might include hundreds of layers, millions of coefficients and
even require billions of operations [3].

CNN has different types of layers. Convolutional layers are the ones that consume the
majority of computations. These layers have a large number of coefficients and because of
that,multiply-accumulate operations (MACs) are performed extensively.Hence, convlutional
layers lead to a large number of consumed MACs cycles.

While typical applications use parallel GPUs and perform floating-point data format,
the embedded systems and specially the real-time ones require a fixed-point format [4]. In
response to this demand, Nvidia has launched new graphical units architectures with reduced
representation formats (16-bits, mini-float, and 8-bits integer arithmetic units) [5]. Cadence
Design Systems launched a Vision DSP, and Xilinx FPGA. It is worth noting that due to its
arbitrary representation and configuration, FPGAs are well suited for deep learning based
embedded applications. They enable using arbitrary precision of data representation in every
stage of the processing flow. Consequently, the biggest vendors: Intel and Xilinx introduced
their own design flows intended for researchers and engineers to facilitate incorporation of
deep learning technology into FPGAs [6].

A key property of CNN is its resistance to noise, while keeping the performance stable.
Hence, treating any degradation resulted from quantization process as a new source of noise,
makes CNN a preferable choice to do this job. Nowadays, CNN has a reliable sloutions to
many robotics and vision problems like [7–10].

The quantization process can be applied to both inference and training phases. Training
deep neural networks is done by applying many small changes to the network coefficients.
These small adjustments utilize higher precision format which accumulate slowly over time
and converge to optimal values. There are research efforts to use the quantized representation
for the training phase, but in general more bits are required for training phase than for
inference phase [11–16]. Our work focuses on quantizing only the inference phase as most
real-time embedded systems are currently deployed with this mode of operations [4]. In
this article, we focus on quantizing the CNN for both coefficients and (input/ output) data
with a reduced precision format (8-bits and partially 4-bits). This article introduces a novel
hybrid quantization (HQ) approach. (HQ) quantizes a given network layer data points (i.e.,
both coefficients and data) at different levels. Hence, the network performance stability
might be guaranteed using a specific HQ level. Additionally, k-means clustering approach is
implemented for further complexity reduction. The quantization was implemented without
any retraining steps and modifications in the network architecture.

In short, themotivation is: Enhancing theCNNcapability to be implemented for embedded
devices by reducing the required storage for the network, and the performed computations on
these low-powered devices. Such enhancement should keep the CNN performance stable for
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the inference task. Our main stability criterion is to achieve drop in accuracy less than 1% in
all compressed netowrks. Our contributions are: (1) We run a search algorithm discovering
the optimal network pruning on a pre-trained network and pruning it with retraining ability.(2)
We apply a hybrid quantization HQ approach. (3) We use a k-means quantization approach
and other statistical based quantization which reduces the network computation complexity.
(4) We generate a stable CNN network with a reduced precision format (8-bits and partially
4-bits) for both coefficients and (input/ output) data.

The paper is organized as follows. The related works are described in Sect. 2. Section 3
explains the CNN architecture and how complexity of a CNN is measured. Pruning and
incremental pruning approaches for memory optimization are discussed in Sects. 4 and 5.
The floating-point and fixed-point representation, mapping between them, complexity reduc-
tion and other quantization systems are discussed in Sect. 6. Section 7 reviews the hybrid
quantization approach. In Sect. 8, we present a new automatic quantization approach. K-
means quantization approach is described in Sect. 9. In Sect. 10, we show a histogram based
quantization technique. Finally conclusions and remarks appear in Sect. 11.

2 RelatedWorks

Many works have shown CNN quantization [12,17,18]. Common strategies are to quantize
all coefficients in a single layer with specified number of bits to represent the integer and
fractional parts [17,18] based on the range of values of the coefficients set. The other strategy is
to represent coefficients and data by integer numbers with appropriate scaling factors. In [19],
an 8-bits CNN implementation is compared to an implementation with 32-bits floating-point
for speech recognition to speed-up throughput. In [20], a fixed-point network with ternary
weights and 3-bits activations approach was presented.

Severalmethods attempt to binarizeweights and the activations in neural networks [14,21–
23]. Majority of them resulted in a significant drop in accuracy relative to the floating-point
performance. The most efficient approach among them is the XNOR-Net [23] architecture,
which achieves comparable results relative to the floating-point format using only binary
weights. Complexity reduction of CNN can be achieved by several other techniques (e.g.
SVD reduction, reducing filter size) [24–26]. SqueezeNet [27] is an example of compressed
version of AlexNet [28], reducing 60 M parameters size to only 0.5M while preserving its
accuracy. There are also other new approaches for image object recognition like hierarchical
temporal memory based on neocortex architecture [29–32] which is suitable for embedded
systems.

Recently, many tools have been developed for CNN. Many of them take into account the
quantization of the networks. Ristretto tool quantizes CNNs using two phases. In the first
phase, conventional quantization is used. In the second phase, there is a fine tuning process
where the network is retrained using the reduced precision formats of the first phase [18,33].
The TensorFlow [34] and Pytorch deep learning frameworks provide facilities for quantiza-
tion, where floating-point numbers in a certain range are quantized/dequantized (to/ from)
8-bits asymmetric integer precision format. A K-means approach for CNN compression has
been used in [25]. A key difference between this compression method and our work is the
dimensionality of the clusters. In [25] the clustered points are single coefficients whichmakes
it difficult to achieve efficiency in an embedded processor, especially with vector processors
that can handle hundreds of coefficients and data samples in parallel with a single instruction.
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Fig. 1 Convolutional layer structure, and the order of a layer kernels in the convolving process

3 Convolutional Layer Complexity

CNNs are composed of neurons that have learnable weights and biases. Each neuron receives
inputs structured as multi-dimensional matrices (tensor), convolves them with its multi-
dimensional learnable weights and biases. Typically, the layers of a CNN network have
neurons that generate outputs feature maps yi , i = 1 . . . N as follows [35]:

yi = bi +
M∑

j=1

(Fi j ◦ x j ) (1)

where Fi j is a single two-dimensional (2D) convolutional kernel with dimensions H × W . x j
represents an input feature maps. ‘◦’ represents the convolving operation and bi is the bias
vector. Figure 1 illustrates one three-dimensional (3D) kernel F̄i = (Fi1, . . . , FiM ) with dimen-
sions H × W × M. Altogether, the N three-dimensional kernels form one four dimensional
(4D) set of filter coefficients related to N output feature maps.

The number of multiply-accumulate (MAC) operations and cycles spent during the
execution of Fig. 1 in a practical implementation is often used as the metric for com-
plexity of a CNN [36]. Assuming each output feature map yi has P output pixels (i.e.,
image data) the total number of MAC calculations for a convolutional filtering operation is
MACs = (P · H · W · M · N ).

4 Pruning

After training a neural model, we acquire a set of weights for each trainable layer. These
weights are not evenly distributed over the range of possible values for a selected data format.
Majority ofweights are concentrated around0or very close to it. Therefore, their impact on the
resulting activation values is not significant. The pruning mechanism removes weights which
values are below a certain threshold level. Authors of [37] examined how pruning affects
convolutional neural networks for image classification. In this work, pruning is applied to all
convolutional layers according to Algorithm 1. Pruning focuses on weights that are close to
0. For negative values purposes, we use an absolute threshold value.

Depending on the used network implementation specifications, storing weights may
require a significant amounts of memory. Applying pruning process to remove some weights
has a direct impact on lowering storage requirements. The algorithm computes histograms
for a network layers, and divides each one into a specified number of buckets. In each itera-
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Table 1 Pruning results of
ResNet-50 (drop in Top-1 Error
<1%)

Layer Coefficients pruned (%)

conv1 36.3

fc1000 56.6

block2 30.8

block3 37.9

block4 34.8

block5 33.8

Average 35.0

tion, it chooses one layer to be pruned. The chosen layer is based on a tournament strategy
focuses on layers complexity. If a layer is more complex than others, it has more chance to
be chosen.

In each iteration, one layer is pruned with coefficients from the first single bucket which
haven’t been already pruned (line 7). If drop in accuracy is higher than a given threshold,
reverse pruning process is applied (i.e., coefficients from a bucket are set back to the original
values (line 9)). Fitness function is the overall memory capacity of the weighted sparsity of
current solution (line 11). Solution is represented as a simple genotype, where each layer is
a genome and its value is the number of buckets that were pruned in this layer.

Additionally, algorithm stores k-best solutions already found in a ranked list. If algorithm
stuck at some point it can return back to a better solution stored in the ranked list. The
other applied feature is sensitivity metric which defines how pruning the layer affects the
accuracy. If more sensitive layer is chosen, the granularity of buckets is increased for this
layer.

The order in which quantization (described later) and pruning are applied affects the
quantization process and the storage status, especially for higher precisions. If quantization
is applied first, then pruning (if applied for a certain quantization level) will remove the whole
level contents. If pruning is applied first, then it is able to cut out weights more precisely.
Results of pruning are presented in Tables 1, 2, 3 and 4. The results show that it is possible to
achieve between 20 and 50% saving in convolutional layers. Algorithm is also able to prune
fully connected layers with saving between 52 and 72%.

The comparison between Algorithm 1 and the approach described in [38] which uses rein-
forcement learning is presented in Table 5. The used dataset for SegNet is CamVid dataset,
while in VGG-16 we used CIFAR-10 dataset. For both SegNet and VGG-16, Algorithm 1
approach achieved worse results than in [38]. In case of VGG-16 in both cases the drop is
1%. In case of SegNet algorithm 1 drops 0.8%, while in [38] the accuracy increases because
of retraining process. The baseline accuracies were SegNet 84.01%, VGG-16 92.64%. In
our approach, and in [38] were 86.50% and 92.77% respectively. In case of VGG-16, we
achieved better results than the approach presented in [39]. In [39] there is up to 64%
pruned coefficients and about 6% drop in accuracy. Therefore, the presented approach is
significantly faster and can be done on a smaller dataset. It worth noting that in case of
FLOPs reduction our approach achieved significantly better results with VGG-16 than in
[38], as shown in Table. 6. In this case it guarantees better speedup with higher memory
capacity.

The pruning process was reapplied while the drop in Top-1 Error is less than 2%.
Figures 2 and 3 show the sparsity for each layer for SegNet and VGG-16 respectively.
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Algorithm 1 Pruning algorithm.
1: Input: number_of_buckets_to_which_hist_is_divided
2: Input:

drop_in_accuracy_threshold, baseline_error
3: compute_hist_coeff_of_all_layers
4: layer = random_choose_layer_for_pruning()
5: for number_of_iterations do
6: Top-1 Error = compute_accuracy()
7: if

((Top-1 Error)- baseline) < drop_in_accuracy_thresh then
8: prune_next_bucket_from_hist()
9: else
10: reverse_pruning_bucket_from_hist()
11: end if
12: fitness = compute_new_fitness()
13: if fitness < best_fitness then
14: next_solution = current_solution
15: best_solution = current_solution
16: else
17: next_solution = best_solution
18: end if
19: layer_sensitivity_update
20: end for

Table 2 Pruning results of
ResNet-101 (drop in Top-1 Error
<1%)

Layer Coefficients pruned (%)

conv1 22.7

fc1000 72.9

block2 28.5

block3 31.0

block4 25.6

block5 22.7

Average 26.7

Table 3 Pruning results of
VGG-19 (drop in Top-1 Error
<1%)

Layer Coefficients pruned (%)

conv layers 27.7

fc 51.7

Average 31.5

5 Incremental Pruning

Incremental pruning involves retraining a CNN model after the pruning operation. The pro-
cess may be considered as incremental shaping of coefficients distribution. Usually, at the
very beginning of the process severe degradation of performance occurs. The accuracy of the
model improves with more epochs of training. There are several factors affecting the process
of the incremental pruning such as: (1) Percentage of coefficients to be pruned. (2) Number
of epochs in the retraining, and (3) Degree to which an original model was trained.

It may be sometimes more effective to start with the model which has not been completely
trained and prune it gradually with the training process.
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Table 4 Pruning results of
AlexNet (drop in Top-1 Error
<1%)

Layer Coefficients pruned (%)

conv1 19.3

conv2 38.6

conv3 42.8

conv4 35.0

conv5 25.3

fc6 58.7

fc7 64.3

fc8 54.0

Average 42.2

Table 5 Compression using the
pruning approach. Values
represent the percentage of
sparsity

Network Algorithm 1 (%) Approach in [38] (%)

SegNet 40 56.9

VGG-16 73 81

Table 6 Compression
Comparison of FLOPs saved

Network Algorithm 1 (%) Approach in [38] (%)

SegNet 40 63.9

VGG-16 71.6 55.2

The incremental pruning experiments involve: (1) Training the model for 8 epochs. (2)
Pruning is done after every single epoch. (3) Both coefficients and activation (i.e., output)
are quantized to 8-bits, and (4) 40% of each layer coefficients are pruned.

Figures 4 and 5 present results of incremental pruning with retraining. It is worthy to men-
tion that the model of Inception_v3 is not completely trained. The authors trained the model
for 11more epochs and reached accuracy of Top-1 Error and Top-5 Error: 77.222%,
93.526%, respectively. Going beyond 11 epochs does not lead to a better performance. We
repeated the simulations for many different models including ResNet-101, ResNet-50, and
VGG-19.

6 Network Quantization

Quantization is the process of constraining values froma continuous set ormore dense domain
to a relatively discrete set (e.g. integers), and more sparse domain in which the quantized
input values will be represented. In our case, the domain is the floating-point representation.
A floating-point number can be represented as

flp = m · be (2)

m ∈ Z is the mantissa, b = 2 is the base, and e ∈ Z is the exponent. In case of single
precision floating-point format according to the IEEE-754 standard, the mantissa is assigned
23-bits, the exponent is assigned 8-bits, and 1-bit is assigned for a sign indicator. Therefore,
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Fig. 2 Layers sparsity in SegNet model. The used dataset is CamVid

Fig. 3 Layers sparsity in VGG-16 model. The used dataset is CIFAR-10

the set of values that can be defined by this format is described by:

flpsingle : {±2−126, . . . ,±(2 − 2−23) × 2127}. (3)

Similarly, a reduced precision IEEE-754 mini-float format assigns 10-bits of mantissa,
5-bits of exponent and a sign bit.
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Fig. 4 Top1 accuracy (y-axis) after running 8 epochs (x-axis) of pruning with 40% sparsity in each layer

Fig. 5 Top5 accuracy (y-axis) after running 8 epochs (x-axis) of pruning with 40% sparsity in each layer
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Currently,GPUswith parallel processingbeing applied tomachine learningoperatemainly
using the single precision format. In contrast, embedded DSPs and the latest GPUs operate
with 8-bits integer and 16-bit fixed-point processing that restricts numbers to the range:

fxp : 2−frac_bits · {−2total_bits−1, . . . , 2total_bits−1 − 1} (4)

where total_bits = 8, 16 are conventional bit-widths. The frac_bits or (F) is a shift down
(or up) that determines fractional length, or number of fractional bits. The signed integer
length int_bits or (I) = (total_bits) − (frac_bits) − 1. This format is also referred to as
dynamic fixed-point [40].

It is possible to define a general mapping from a set of floating-point data x ∈ S to a
fixed-point q as follows (assuming signed representation)

qfxp = Q(xflp) = μ + σ · round(σ−1 · (x − μ)). (5)

In our case μ = 0 and σ = 2−frac_bits where:

int_bits = ceil(log2(max
x∈S |x |)) (6)

frac_bits = (total_bits) − (int_bits) − 1. The scaling factor σ is essentially just a shift up
or down. A drawback is that a great deal of precision may be lost if the distribution of the
dataset S is skewed by a large mean.

Yet, another approach can define the number of integer and fractional bits to represent
regions of a distribution that will represent a large percentage of the range. In this case, there
will be saturation of a small percentage of the data such as outliers, through the quantization
procedure which may or may not affect the accuracy in a significant way. To determine the
effects of saturation, one can experimentwith different saturation levels. Therefore, histogram
analysis is used to analyze outliers and assign the best levels of saturation.

Another approach is quantization that maps floating-point values to integers:

qint = Q(xflp) = ceil((x − μ)/((max(X) − min(X)) · σ−1)) (7)

The parameter μ can be set to min(X) (i.e., X is an input set of values to be quantized) or
can be zero value. In the first case, it is known as a asymmetric integer quantization (e.g.
used in Tensorflow framework). In the second case, it is called symmetric. The compression
system presented in this paper is based on the symmetric quantization and dynamic fixed
point.

All the aforementioned approaches are examples of linear quantization. It is also possible
to use nonlinear version to minimize quantization loss, however its hardware implementation
ismore sophisticated and difficult to achieve a reasonable gain in the used hardware resources.

Yet, another approach can define I and F based on data points distribution histogram.
Assuming a given percentage (i.e., a large portion of the histogram data points like 99.9%) to
be covered in the quantization assigned I andF . In this case, there will be a small percentage
of the data points considered as outliers. To determine the effect of saturation (i.e., outliers),
one can experiment the performance with different saturation levels.

Remark 1 Complexity may be interpreted in terms of the size of the hardware blocks required
to implement the MAC operations. Also, it can be interpreted in terms of the total or average
number of cycles required by a processor to perform these operations. In order to compare
the reduction in complexity across quantization, we adopt the MAC complexity of 8-bits
operations with notation < coeff, data > = < 8b, 8b > as a reference unit. Other quantization
formats can be compared relative to the complexity of < 8b, 8b > operations. For instance,
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Table 7 The parameters of 4th
AlexNet convolutional layer and
its computational complexity in
various quantization formats

Format Relative complexity
< coeff, data > [M MACs]
< 8b, 8b > 224 = HPWMN

< 4b, 8b > 112 = 1
2 < 8b, 8b >

< 4b, 4b > 56 = 1
4 < 8b, 8b >

< flp, flp > ≥ 2016 = 9 < 8b, 8b >

N = 256, P = 272, M = 48, H = W = 5

if a 4-bits representation is used for both coefficients and data, then < 4b, 4b > notation is
used. The relative complexity of < 4b, 4b > is approximately 1/4 that of < 8b, 8b >. Similarly,
floating-point operations < flp,flp > will have approximately 9× to 10× of the complexity
of < 8b, 8b > since there is 3× of the number of bits to represent the mantissas plus the
remaining work required to handle exponents. Table 7 calculates the complexity for the 4th
convolutional layer of AlexNet for various quantization formats.

7 Hybrid Quantization

This section explores Hybrid Quantization (HQ) of a CNN network. In HQ, coefficients
are represented in a hybrid fashion by assigning different fixed-point formats to different
partitions of convolutional layers and feature maps. For instance, different precisions (i.e.,
numbers of bits) and different formats (i.e., I, F) can be assigned to each 2D filter or
3D kernel of a convolutional layer. Fully connected layers are only treated as 4D kernels.
Similarly, different precisions and formats can be assigned to different partitions of the input
and output feature maps. Defining precisions and formats in a hybrid fashion adds additional
overhead for data representation both in terms of storage space and facilities to decode it.
Nevertheless, it can bring about a significant improvement in CNN accuracy when compared
to a homogeneous quantization (i.e., 4D). Varying formats for intermediate accumulated
values can be specified in the same hybrid fashion. There are three different formatting
schemes are summarized as follows:

– Layer-based or 4D-HQ: Entire layer kernels are quantized using the same precision
format. In Fig. 6a all coefficients in the 4D convolutional kernels Fi j are quantized by
the same F, I precision format.

– Kernel-based or 3D-HQ: Coefficients in each 3D kernel in a layer are quantized inde-
pendently [41]. In Fig. 6b each 3D kernel with filters F̄i = (Fi1, . . . , FiM ) is quantized
independently with precision format F[i], I[i] for each i .

– Filter-based or 2D-HQ: Each 2D filter (each channel in a kernel) in each kernel in a
layer is quantized independently. In Fig. 6c each filter Fi j is quantized independently
with precision format F[i, j], I[i, j] for each pair i, j .

For a large data precision, homogeneous quantization (i.e., 4D) is sufficient enough to quan-
tize the data points. The problem appears with low precision format, the assigned quantized
levels are not sufficient enough to represent all the data points in all layer kernels with sat-
isfied accuracy. In 3D quantization, the maximum absolute value in each kernel controls
the kernel quantization format. Hence, it reduces the gap between the data points and the
used maximum absolute value.When using 2D quantization, the quantization produces more
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Fig. 6 Different quantization schemes

Fig. 7 4D quantization problem when outliers appears in the data. x dimension represents the data points in
the 4th convolutional layer in AlexNet. The y dimension represents the magnitude for each data point

efficient quantization, where we restrict the maximum absolute value to each 2D filter inde-
pendently. This effect is described in Fig. 7. The data point in the red circle (which might
seem as an outlier) affects the layer quantization format using the homogeneous quantization
(4D). However, using 3D or 2D quantization this effect can be drastically reduced. Therefore,
kernel quantization (3D) is performed in case of< 8b, 8b >AlexNet quantization to achieve
1% loss in accuracy relative to the floating-point representation.

Next, we evaluate the performance of various HQ modes on several CNN models. The
results are presented inTable 8.The system is also ported to afixed-pointC-model inwhich the
intermediate accumulator values at the output of a convolutional filter can be also quantized.
The ported C code supports collecting internal statistics about filters that can be used for a
deeper quantization.
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Table 8 Comparison of hybrid quantization for several CNN networks models

Top-5 Error (%) Top-1 Error (%) FXP Configuration

FLP FXP FLP FXP Coeff. Data

Caffe-AlexNet 20.33 20.86 43.35 44.01 8b, 4D 8b, 4D

20.33 20.74 43.35 43.92 8b, 3D 8b, 4D

MatConvNet-AlexNet 19.93 35.64 42.36 59.66 8b, 4D 8b, 4D

19.93 20.26 42.36 42.87 8b, 3D 8b, 4D

GoogleNet 13.54 13.68 34.89 35.23 8b, 4D 8b, 4D

13.54 13.66 34.89 35.23 8b, 3D 8b, 4D

VGG-VeryDeep-19 10.64 10.73 29.48 29.93 8b, 4D 8b, 4D

10.64 10.83 29.48 30.21 8b, 3D 8b, 4D

ResNet-50 8.29 9.18 25.11 27.00 8b, 4D 8b, 4D

8.29 8.86 25.11 26.32 8b, 3D 8b, 4D

ResNet-101 8.61 18.33 23.96 40.40 8b, 4D 8b, 4D

8.61 16.53 23.96 38.30 8b, 3D 8b, 4D

ResNet-152 7.23 91.29 23.51 97.06 8b, 4D 8b, 4D

7.23 91.08 23.51 96.82 8b, 3D 8b, 4D

7.1 Performance Analysis for Different Networks

Several networks have been tested against our proposed quantization strategy. The goal
is to quantize the networks while keeping the performance within the range less than 1%
performance degradation relative to the floating-point performance. We applied < 8b, 8b >

quantization precision to all networks. Hybrid quantization 4D and 3D are used in the quanti-
zation. Table 8 shows the effect of using hybrid quantization using different network models.
The results compare between the floating-point performance and the fixed-point perfor-
mance for both Top-5 Error, and Top-1 Error. Coefficients and data configurations
are described for each network model. Several network models can be quantized using 3D-
HQ with less than 1% drop in the accuracy. In some cases for ResNet (i.e., ResNet-101, and
ResNet-152) we failed to achieve stable results, however we were able to make them stable
with the help of histogram based quantization (explained later).

8 Automatic Advanced Quantization

Investigating the performance of mixing 8-bits and 4-bits precision format on different net-
work layers has a lot of insights, specially for embedded devices. Utilizing some statistics
gathered during the evaluation of the CNN, we can decide which parts of the network should
use (8-bits/4-bits) precision format. In this quantization scheme, the energy contribution Ei j

of each 2D filter Fi j is accumulated over a set of probe images as follows:

Ei j =
∑

probe
images

∑

pixels
p

|yi j (p)|2 (8)

where yi j = Fi j ◦ x j represents partial feature maps. Essentially, the quantization scheme
assigns baseline precision (i.e., 8-bits) to 2D filters with high energy contribution and
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Fig. 8 Automatic tuning. α is the reference Top-1 Error. � is the energy threshold. δ is a hyper parameter for
energy adjustment amount

Table 9 Hybrid quantization of the 4th layer in AlexNet (40% of coefficients are in 4-bits format), all biases
are in 8-bits

Experiment Layers: 1, 18 4 7, 9, 11, Top-1 Savings (%)
14, 16 Error (%)

Conservative Baseline < 8b, 8b > < 8b, 8b > < 8b, 8b > 42.7 0

Moderate < 8b, 8b > < 4b, 8b > (40%) < 4b, 8b > 43.1 30

Aggressive < 8b, 8b > < 4b, 8b > (100%) < 4b, 8b > 64.1 44

Table 10 VGG-19 4-bits partial
quantization

Fxp Format

Layers 1–15 8-bits (3D-HQ)

Layer 16 4-bits (3D-HQ)

FC (17, 18, 19) 4-bits (3D-HQ)

Top-1 Error 30.8 (%)

FLP 29.48 (%)

lower precision (i.e., 4-bits) to 2D filters with low energy contribution based on some
energy threshold �. An automatic threshold tuning and quantization procedure was devel-
oped to minimize complexity through quantization while maintaining a reference level of
Top-1 Error = aα. The procedure is illustrated in Fig. 8.

Table 9 shows the results of this quantization scheme. The Conservative experiment uti-
lizes 8-bits 2D-HQ quantization throughout all layers. In theModerate experiment, the layers
(1, 18) are quantized to < 8b, 8b >. The most computationally expensive Layer 4 is quan-
tized with 40% of its 2D filters in < 4b, 8b > format and all other layers use < 4b, 8b >

quantization. TheModerate experiment suffers< 1% loss in accuracy relative to the floating-
point but results in 30% savings in complexity relative to the Conservative experiment. The
Aggressive experiment completely quantizes Layer 4 to< 4b, 8b > resulting in a drastic loss
in accuracy.

A similar strategy to Algorithm 1, we developed another one for advance quantization
and tested it on VGG-19. The approach is based on searching for the optimal partial 4-bits
quantization. Algorithm 2 tries to find the configuration with the smallest overall network
memory capacity while drop in the accuracy is less than a given threshold (line 10). This
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approach prioritizes complex layers for a deeper quantization (line 4). The results are pre-
sented in Table 10. The presented solution achieves using 3D-HQ 50% saving in memory
capacity and 50% in MAC operations.

Algorithm 2 4-bits partial quantization.
1: Input: network layers with theirs complexity
2: Input: drop_in_accuracy_threshold
3: for number_of_iterations do
4: layer = layer_selection_based_on_complexity()
5: accuracy_4D = quantize_the_layer_to_4-bits_4D(layer)
6: accuracy_3D = quantize_the_layer_to_4-bits_3D(layer)
7: accuracy = max(accuracy_3D, accuracy_4D)
8: sensitivity = check_sensitivity_of_the_layer(accuracy)
9: fitness = compute_fitness_function()
10: if (flp_accuracy - accuracy) < drop_in_accuracy_threshold then
11: if fitness < best_fitness then
12: best_fitness = fitness
13: end if
14: end if
15: end for

9 K-Means Quantization

K-means approach splits a layer coefficients kernels into two parts, basis filters G�(i) (i.e.,
approximations) and residual filters F̃i (i.e., differences) leading to Fi = G�(i) + F̃i . The K-
means clustering algorithm splits a layer kernels into k centroids kernels serve as approximate
kernels for their related cluster groups. The residual kernels are the differences between the
original kernels and their corresponding approximation centroids.

The base and residual filters are assigned different quantization formats in order to reduce
the complexity while maintaining the accuracy. In this work, we apply K -means clustering to
derive a set of K < N basis 3Dkernels. These kernels are formattedwith< 8b, 8b > precision.
The residual kernels are assigned a lower precision (i.e., < 4b, 8b > or < 4b, 4b >). The
final yi can be described as:

yi = bi +
M∑

j=1

G�(i), j ◦ x j︸ ︷︷ ︸
<8b,8b>

+ F̃i j ◦ x j︸ ︷︷ ︸
<4b,8b>,<4b,4b>

(9)

where G�(i), j are the basis filters assigned to each 3D kernel via some mapping
�(·) : [1..N ] �→ [1..K ]. The residual filters are given by F̃i j = Fi j − G�(i), j . Assuming the base
kernels use < 8b, 8b > precision and the residuals use < 4b, 8b >, the effective complexity
savings of this approach is a factor of (N − K )/2N . Figure 9 illustrates the implementation
of K -means quantization. In the first step, the input is convolved with K basis kernels and
generate K temporary feature maps. Next, the output of the residual filters are added to their
corresponding base filter temporary feature maps yielding the final output of the convolu-
tional layer. A disadvantage of this approach is that the temporary feature maps have to be
stored.

Table 11 shows the performance of the K-means approach for the 4th convolutional layer
in AlexNet, the layer with the largest complexity (all other layers are kept in floating-point
format). While 2D-HQ with < 4b, 8b > format results in 50% reduction in complexity of
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Fig. 9 Quantization using K-means clustering

Table 11 K-means quantization of the 4th Convolutional Layer in AlexNet (all other layers are kept in
< flp, flp >)

Quantization
method

Base format Residuals
format

Top-1
Error (%)

Complexity
[M Macs]

Layer
savings (%)

Network
savings (%)

2D-HQ Baseline < 8b, 8b > 42.7 224

2D-HQ < 4b, 8b > 65.9 112 50 15

K -means < 8b, 8b > < 8b, 8b > 42.2 227 −2 −0.6

K -means < 8b, 8b > < 4b, 8b > 42.7 117 48 15

the layer, the loss in accuracy is drastic. K-means quantization to < 8b, 8b > base format
and < 8b, 8b > residuals format with K = 4 is attempted as a baseline (i.e., K is chosen to
be 4 based on empirical experiments), yielding a slight increase of 2% in complexity and no
significant change in performance. Next, K-means quantization to < 8b, 8b > base format
and < 4b, 8b > residuals format leads to 48% complexity reduction in the layer MACs and
no degradation in accuracy relative to < 8b, 8b >.

InTable 12weappliedK-means quantization to< 4b, 8b > residuals format to all layers of
the network except layer number 1, which is sensitive to perturbations. The net savings for the
network is more than 40% with a degradation in accuracy less than 2%. In this experiment,
we chose different k values for different layers (i.e., based on empirical experiments). In
Tables 13 and 14, the results of using k-means approach in some parts of ResNet-50 and
VGG-19 networks are presented. The results show that further quantization can be done on
VGG-19 using k-means without significant drop in the accuracy. ResNet-50 is more sensitive
to 4-bits quantization than AlexNet and VGG-19 because of the higher drop in the accuracy.

10 Histogram-Based Quantization

Histogram-based quantization is a combination of 3D-HQ, and 4D-HQ (i.e., first approach) or
can be done only as 4D-HQ (i.e., second approach). Themotivation beyond this methodology
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Table 12 Hybrid clustered
quantization of AlexNet FLP 42.36%

Base < 8b, 8b >

Residuals Layer 1: < 8b, 8b >

All others: < 4b, 8b >

Top-1 Error 44.1%

k k = 2 for layers 1, 4, 11, 14, 16

k = 3 for layer 7

k = 6 for layer 9

k = 4 for layer 18

Complexity [M MACs] 422

Network Savings 41.6%

Table 13 Hybrid clustered
quantization of ResNet-50 FLP 25.11%

Base < 8b, 8b >

Residuals Block 2, 3, 4, 5: < 8b, 8b >

Block 1: < 4b, 8b >

Top-1 Error 29.2%

k k = 4

Network Savings 19.8%

Table 14 Hybrid clustered quantization of VGG-19

FLP 29.48%

Base < 8b, 8b >

Residuals conv layers from 3 to 12 and FCs: < 8b, 8b >

All others: < 4b, 8b >

Top-1 Error 30.5%

k k = 4

Network Savings 20.2%

is to separate the data into two parts. One part, is quantized using 4D-HQ, and the other one
is using 3D-HQ. The first approach approach uses the histogram of the input, which gives
indication on how data is distributed in the histogram curve. Usually a low portion of the
data (i.e., less than 1%) can affect the whole process. The tradeoff in this methodology is
the computation cost. Quantizing the whole input using 3D-HQ might be a computationally
expensive choice, however 4D-HQmight degrade the quantization process accuracy. To deal
with such a situation, the majority of the input which is located within a predefined upper
and lower bounds in the histogram is quantized using the 4D-HQ, which is a cheap choice of
quantization. The rest of the input which is located beyond the predefined upper and lower
bounds (i.e., less than 1%) is quantized using 3D-HQ, which is an expensive choice.

Algorithm 3 shows how the histograms are created as a preparation step for quantization.
A convolutional layer output (i.e., feature maps) is preprocessed for creating its related
histogram. Feature maps (i.e., assuming we are working on feature maps quantization) data
is extracted from that layer in the preprocessing (line 2). The bounds of the required histogram
are specified using max_data and min_data (lines 3, 4) which represent the maximum

123



M. Al-Hami et al.

Algorithm 3 Histogram Creation for feature maps.
1: Input: Layer output feature maps values
2: data = Layer output feature maps values
3: max_data = max (data(:))
4: min_data = min (data(:))
5: nbins = 1000
6: edges = linspace (min_data, max_data, nbins + 1)
7: hist_data_values = histogram (data, edges)
8: cp = edges + (edges(2) - edges(1)) / 2

andminimum values in the data tensor. For histogram building, we fixed the number of bins
to 1000 (line 5), and estimating each bin boundary in the edges (line 6). Next, histogram
is constructed based on the specified edges and the input feature maps values data (line
7). Finally, center point (cp) for each histogram bin is estimated (line 8). For coefficients
quantization, we follow the same procedure, however this time the input for the histogram is
the layer coefficients.

Algorithm 4 Histogram Based Quantization.
1: Input: hist_data, cp
2: Input: data_prob_thresh
3: totalValues = sum (hist_data_values(:))
4: prob = 100.
5: max_int_bits = ceil (log2 (max (abs (data(:)))))
6: int_bits = max_int_bits
7: while prob >= data_prob_thresh do
8: optimal_prob = prob
9: optimal_int_bits = int_bits
10: int_bits = int_bits - 1
11: I = find (abs (cp(:)) <= 2(int_bits))

12: linValues = sum (hist_data_values(I));
13: prob = 100*sum (linValues) / totalValues
14: end while
15: lower_bound = −2optimal_int_bits

16: upper_bound = 2optimal_int_bits

17: idx_4D = not(abs (sign (sign (lower_bound - data) + sign (upper_bound - data))))
18: idx_3D = not(not(abs (sign (sign (lower_bound - data) + sign (upper_bound - data)))))

Algorithm 4 describes the quantization process using histogram based technique. Start-
ing with data_prob_thresh which is the used threshold for specifying the mixed
quantization percentage. For example, 99 means 99% of a layer output feature maps
values are quantized using 4D-HQ, and only one percent is quantized using 3D-HQ.
The question now, is how to determine the feature maps values that will share the 4D-
HQ and the ones that will be restricted to 3D-HQ. The algorithm focuses on finding
an optimal int-bit optimal_int_bits which is suitable to quantize a large potion
of the data points. This optimal_int_bits is estimated through an iterative pro-
cedure (lines 7–14). Starting from an initial int-bits max_int_bits which covers the
whole data points quantization range (line 5), each iteration reduces the number of
optimal_int_bits by one (line 9–10). This new optimal_int_bits makes some
data points in the histogram out of quantization range (lines 11–13). This iterative process
continues until the new optimal_int_bits is suitable for the pre-defined threshold
which is data_prob_thresh. The algorithm separates data points into two regions, the
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Fig. 10 Histogrambased quantization.Histogramof output data for layer 1 forAlexNetmodelopt_int_bit
= 11 (data_prob_thresh = 99.9988%; max_int_bit = 12)

Table 15 Effect of using histogram based quantization with hybrid quantization on several CNN networks
models. data_prob_thresh = 99.9988%

Top-5 Error (%) Top-1 Error (%) FXP Configuration

FLP FXP FLP FXP Coeff. Data

Caffe-AlexNet 20.33 20.51 43.35 43.64 8b, 4D 8b, Histogram (second approach)

20.33 20.43 43.35 43.52 8b, 3D 8b, Histogram (second approach)

MatConvNet-AlexNet 19.93 34.28 42.36 58.83 8b, 4D 8b, Histogram (second approach)

19.93 20.13 42.36 42.53 8b, 3D 8b, Histogram (second approach)

GoogleNet 13.54 13.60 34.89 34.90 8b, 4D 8b, Histogram (second approach)

13.54 13.58 34.89 35.09 8b, 3D 8b, Histogram (second approach)

VGG-VeryDeep-19 10.64 10.72 29.48 29.93 8b, 4D 8b, Histogram (second approach)

10.64 10.61 29.48 29.62 8b, 3D 8b, Histogram (second approach)

ResNet-50 8.29 8.80 25.11 26.25 8b, 4D 8b, Histogram (second approach)

8.29 8.63 25.11 25.78 8b, 3D 8b, Histogram (second approach)

ResNet-101 8.61 8.36 23.96 25.69 8b, 4D 8b, Histogram (first approach)

8.61 7.91 23.96 24.59 8b, 3D 8b, Histogram (first approach)

ResNet-152 7.23 8.11 23.51 24.96 8b, 4D 8b, Histogram (first approach)

7.23 8.07 23.51 25.05 8b, 3D 8b, Histogram (first approach)

one between the red bars (see Fig. 10) is quantized using 4D-HQ. The rest of data points (i.e.,
the ones outside the red bars in Fig. 10) are quantized using 3D-HQ. In case of the second
approach, all points are quantize using 4D-HQ and points that are outliers (1%) are saturated
by the maximum value in the computed range (i.e., range in which 99% of points belong to).

Table 15 shows the effect of using histogram based quantization for several CNNnetworks
models. The results show some improvements for some models compared with the results
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Table 16 Top-1 Error
Comparison with Ristretto
quantization tool (8-bits
quantization)

Network Ristretto (8-bits) (%) Ours (8-bits) (%)
FXP(FLP) FXP(FLP)

Caffe-AlexNet 44 (43.1) 43.52 (43.35)

GoogleNet 33.4 (31.1) 34.9 (34.89)

Table 17 Memory Compression
Ratio

Network Ours Approach in [43]

Caffe-AlexNet 14 27

VGG-16 10 31

in Table 8. For netwok models ResNet-101, and ResNet-152, the histogram based approach
helped a lot in making the quantized networks stable. Using additional optimization by using
mixed 4D-HQ and 3D-HQ, histogram quantization was able to shrink the drop in accuracy
below 1% in ResNet-152 which wasn’t achieved in case of using only 4D-HQ histogram
based quantization.

A similar approach for dynamic fixed-point quantization included in Ristretto system
[42]. We compare our histogram based approach with Ristretto system. The comparison is
described in Table 16. In both cases, AlexNet and GoogleNet, the proposed histogram based
quantization outperforms Ristretto system [42]. In case of 8-bits quantization of Googlenet
the difference is significant. In our case no drop observed (0.01%), in Ristretto more than
2%. Our conclusion is that the described histogram approach for feature maps quantization
can boost performance when many outliers appear.

An Additional comparison to the work presented in [43] has been made. The goal is to
compare the histogram based quantization approach compression ratio with their approach.
It is worthy to mention that, our histogram based quantization does not use retraining phase
at all, while in [43] retraining phase is used extensively. Table 17 shows the compression
ratio results. The results reveal a big difference between our histogram based quantization
and their approach. We can conclude the main reason is the used retraining phase, which
allows them to gain a higher sparsity. On the other hand, their approach is quite slow, while
our approach requires running about 200 iterations of the algorithm 4 which takes less than
half an hour without making any additional retraining phase. Also, their approach uses full
dataset in the retraining phase, while our approach uses only random subset of the test dataset
(10k images) for creating the histograms.

Another approach in the literature [44] uses dimensionality reduction to compress net-
works (Q-CNN). We compare our histogram based quantization approach against their
dimensionality reduction approach. Table 18 shows the drop in Top-1 Error amount
using our approach and Q-CNN approach. In Table 19, the numbers represent the compres-
sion ratio in our approach using quantization and pruning against the Q-CNN approach. The
Q-CNN approach has a better compression ratio for both AlexNet and VGG-16, however
our approach has better speedup as shown in Table 20.

11 Conclusions and Further Work

In this work, we propose a novel quantization methods for Convolutional Neural Networks
(CNNs). The system reduces memory requirements, number of MACs, and overall power

123



Methodologies of Compressing a Stable Performance…

Table 18 Comparison of drop in
accuracy (drop in Top-1
Error) between our approach
and Q-CNN

Layer Ours (%) Q-CNN (%)

Caffe-AlexNet 1.17 1.46

VGG-16 1.21 1.35

Table 19 CNN compression
systems (compression ratio with
pruning)

Layer Ours (%) Q-CNN (%)

AlexNet 14 18.76

VGG-16 10 20.34

Table 20 Comparison of speedup
between our approach and
Q-CNN

Layer Ours (%) Q-CNN (%)

AlexNet 20 4.15

VGG-16 16 4.06

consumption for hardware accelerators. Our research shows that several image recogni-
tion networks can be quantized using 8-bits data precision for both coefficients and data
outputs with minor degradation in the accuracy compared to the floating-point accuracy.
The performed simulations show that memory capacity of well known image recognition
networks can be reduced efficiently. Hybrid quantization and K-means quantization allow
us to use the advanced quantization (e.g. < 4b, 8b >) without any significant degradation
in the performance. Our system is implemented in Pytorch, MatConvnet and ported
to a C-model. We consider adding new features in the future such as: exploiting other
statistics about a network in the quantization process, further optimizing the K -means
approach, network (coefficientss/outputs) binarization [23,45], and applying fine-tuning
and advanced incremental quantization. Research will also focus on improving algorithm
for finding best compressed network using genetic algorithms and deep reinforcement
learning techniques. These additional features will help in reducing the bit-width even fur-
ther.
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